Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
RSC Adv ; 14(19): 13083-13094, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38655474

RESUMO

The solute carrier transporter family 6 (SLC6) is of key interest for their critical role in the transport of small amino acids or amino acid-like molecules. Their dysfunction is strongly associated with human diseases such as including schizophrenia, depression, and Parkinson's disease. Linking single point mutations to disease may support insights into the structure-function relationship of these transporters. This work aimed to develop a computational model for predicting the potential pathogenic effect of single point mutations in the SLC6 family. Missense mutation data was retrieved from UniProt, LitVar, and ClinVar, covering multiple protein-coding transcripts. As encoding approach, amino acid descriptors were used to calculate the average sequence properties for both original and mutated sequences. In addition to the full-sequence calculation, the sequences were cut into twelve domains. The domains are defined according to the transmembrane domains of the SLC6 transporters to analyse the regions' contributions to the pathogenicity prediction. Subsequently, several classification models, namely Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), and Extreme Gradient Boosting (XGBoost) with the hyperparameters optimized through grid search were built. For estimation of model performance, repeated stratified k-fold cross-validation was used. The accuracy values of the generated models are in the range of 0.72 to 0.80. Analysis of feature importance indicates that mutations in distinct regions of SLC6 transporters are associated with an increased risk for pathogenicity. When applying the model on an independent validation set, the performance in accuracy dropped to averagely 0.6 with high precision but low sensitivity scores.

2.
FEBS Lett ; 598(7): 719-724, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514456

RESUMO

The diverse range of organizations contributing to the global research ecosystem is believed to enhance the overall quality and resilience of its output. Mid-sized autonomous research institutes, distinct from universities, play a crucial role in this landscape. They often lead the way in new research fields and experimental methods, including those in social and organizational domains, which are vital for driving innovation. The EU-LIFE alliance was established with the goal of fostering excellence by developing and disseminating best practices among European biomedical research institutes. As directors of the 15 EU-LIFE institutes, we have spent a decade comparing and refining our processes. Now, we are eager to share the insights we've gained. To this end, we have crafted this Charter, outlining 10 principles we deem essential for research institutes to flourish and achieve ground-breaking discoveries. These principles, detailed in the Charter, encompass excellence, independence, training, internationality and inclusivity, mission focus, technological advancement, administrative innovation, cooperation, societal impact, and public engagement. Our aim is to inspire the establishment of new institutes that adhere to these principles and to raise awareness about their significance. We are convinced that they should be viewed a crucial component of any national and international innovation strategies.


Assuntos
Disciplinas das Ciências Biológicas , Pesquisa Biomédica , Academias e Institutos
3.
J Mol Biol ; 436(2): 168383, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070861

RESUMO

Creatine is an essential metabolite for the storage and rapid supply of energy in muscle and nerve cells. In humans, impaired metabolism, transport, and distribution of creatine throughout tissues can cause varying forms of mental disability, also known as creatine deficiency syndrome (CDS). So far, 80 mutations in the creatine transporter (SLC6A8) have been associated to CDS. To better understand the effect of human genetic variants on the physiology of SLC6A8 and their possible impact on CDS, we studied 30 missense variants including 15 variants of unknown significance, two of which are reported here for the first time. We expressed these variants in HEK293 cells and explored their subcellular localization and transport activity. We also applied computational methods to predict variant effect and estimate site-specific changes in thermodynamic stability. To explore variants that might have a differential effect on the transporter's conformers along the transport cycle, we constructed homology models of the inward facing, and outward facing conformations. In addition, we used mass-spectrometry to study proteins that interact with wild type SLC6A8 and five selected variants in HEK293 cells. In silico models of the protein complexes revealed how two variants impact the interaction interface of SLC6A8 with other proteins and how pathogenic variants lead to an enrichment of ER protein partners. Overall, our integrated analysis disambiguates the pathogenicity of 15 variants of unknown significance revealing diverse mechanisms of pathogenicity, including two previously unreported variants obtained from patients suffering from the creatine deficiency syndrome.


Assuntos
Encefalopatias Metabólicas Congênitas , Creatina , Retardo Mental Ligado ao Cromossomo X , Proteínas do Tecido Nervoso , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores , Humanos , Creatina/deficiência , Células HEK293 , Retardo Mental Ligado ao Cromossomo X/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Encefalopatias Metabólicas Congênitas/genética , Análise Mutacional de DNA/métodos , Mutação de Sentido Incorreto , Biologia Computacional/métodos
4.
ACS Chem Biol ; 18(12): 2464-2473, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38098458

RESUMO

Molecular glue degraders (MGDs) are small molecules that degrade proteins of interest via the ubiquitin-proteasome system. While MGDs were historically discovered serendipitously, approaches for MGD discovery now include cell-viability-based drug screens or data mining of public transcriptomics and drug response datasets. These approaches, however, have target spaces restricted to the essential proteins. Here we develop a high-throughput workflow for MGD discovery that also reaches the nonessential proteome. This workflow begins with the rapid synthesis of a compound library by sulfur(VI) fluoride exchange chemistry coupled to a morphological profiling assay in isogenic cell lines that vary in levels of the E3 ligase CRBN. By comparing the morphological changes induced by compound treatment across the isogenic cell lines, we were able to identify FL2-14 as a CRBN-dependent MGD targeting the nonessential protein GSPT2. We envision that this workflow would contribute to the discovery and characterization of MGDs that target a wider range of proteins.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina-Proteína Ligases , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo , Ubiquitina/metabolismo
5.
Nat Commun ; 14(1): 6626, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863876

RESUMO

Dysregulation of pathogen-recognition pathways of the innate immune system is associated with multiple autoimmune disorders. Due to the intricacies of the molecular network involved, the identification of pathway- and disease-specific therapeutics has been challenging. Using a phenotypic assay monitoring the degradation of the immune adapter TASL, we identify feeblin, a chemical entity which inhibits the nucleic acid-sensing TLR7/8 pathway activating IRF5 by disrupting the SLC15A4-TASL adapter module. A high-resolution cryo-EM structure of feeblin with SLC15A4 reveals that the inhibitor binds a lysosomal outward-open conformation incompatible with TASL binding on the cytoplasmic side, leading to degradation of TASL. This mechanism of action exploits a conformational switch and converts a target-binding event into proteostatic regulation of the effector protein TASL, interrupting the TLR7/8-IRF5 signaling pathway and preventing downstream proinflammatory responses. Considering that all components involved have been genetically associated with systemic lupus erythematosus and that feeblin blocks responses in disease-relevant human immune cells from patients, the study represents a proof-of-concept for the development of therapeutics against this disease.


Assuntos
Lúpus Eritematoso Sistêmico , Receptor 7 Toll-Like , Humanos , Receptor 7 Toll-Like/metabolismo , Fatores Reguladores de Interferon/metabolismo , Transdução de Sinais , Anti-Inflamatórios , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
6.
Nat Commun ; 14(1): 6627, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863913

RESUMO

Toll-like receptors (TLRs) are a class of proteins that play critical roles in recognizing pathogens and initiating innate immune responses. TASL, a recently identified innate immune adaptor protein for endolysosomal TLR7/8/9 signaling, is recruited by the lysosomal proton-coupled amino-acid transporter SLC15A4, and then activates IRF5, which in turn triggers the transcription of type I interferons and cytokines. Here, we report three cryo-electron microscopy (cryo-EM) structures of human SLC15A4 in the apo monomeric and dimeric state and as a TASL-bound complex. The apo forms are in an outward-facing conformation, with the dimeric form showing an extensive interface involving four cholesterol molecules. The structure of the TASL-bound complex reveals an unprecedented interaction mode with solute carriers. During the recruitment of TASL, SLC15A4 undergoes a conformational change from an outward-facing, lysosomal lumen-exposed state to an inward-facing state to form a binding pocket, allowing the N-terminal helix of TASL to be inserted into. Our findings provide insights into the molecular basis of regulatory switch involving a human solute carrier and offers an important framework for structure-guided drug discovery targeting SLC15A4-TASL-related human autoimmune diseases.


Assuntos
Transdução de Sinais , Receptores Toll-Like , Humanos , Microscopia Crioeletrônica , Receptores Toll-Like/metabolismo , Imunidade Inata , Lisossomos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
7.
Expert Opin Drug Discov ; 18(10): 1099-1115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37563933

RESUMO

INTRODUCTION: Solute carriers (SLCs) represent the largest group of membrane transporters in the human genome. They play a central role in controlling the compartmentalization of metabolism and most of this superfamily is linked to human disease. Despite being in general considered druggable and attractive therapeutic targets, many SLCs remain poorly annotated, both functionally and structurally. AREAS COVERED: The aim of this review is to provide an overview of functional and structural parameters of SLCs that play important roles in their druggability. To do this, the authors provide an overview of experimentally solved structures of human SLCs, with emphasis on structures solved in complex with chemical modulators. From the functional annotations, the authors focus on SLC localization and SLC substrate annotations. EXPERT OPINION: Recent progress in the structural and functional annotations allows to refine the SLC druggability index. Particularly the increasing number of experimentally solved structures of SLCs provides insights into mode-of-action of a significant number of chemical modulators of SLCs.


Assuntos
Descoberta de Drogas , Proteínas de Membrana Transportadoras , Humanos
8.
Nucleic Acids Res ; 51(17): 9248-9265, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37587695

RESUMO

Though the effect of the recently identified mitochondrial NAD+ transporter SLC25A51 on glucose metabolism has been described, its contribution to other NAD+-dependent processes throughout the cell such as ADP-ribosylation remains elusive. Here, we report that absence of SLC25A51 leads to increased NAD+ concentration not only in the cytoplasm and but also in the nucleus. The increase is not associated with upregulation of the salvage pathway, implying an accumulation of constitutively synthesized NAD+ in the cytoplasm and nucleus. This results in an increase of PARP1-mediated nuclear ADP-ribosylation, as well as faster repair of DNA lesions induced by different single-strand DNA damaging agents. Lastly, absence of SLC25A51 reduces both MMS/Olaparib induced PARP1 chromatin retention and the sensitivity of different breast cancer cells to PARP1 inhibition. Together these results provide evidence that SLC25A51 might be a novel target to improve PARP1 inhibitor based therapies by changing subcellular NAD+ redistribution.


Assuntos
NAD , Cromatina , Reparo do DNA , Mitocôndrias/metabolismo , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos
9.
Cell Chem Biol ; 30(8): 953-964.e9, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37516113

RESUMO

Despite being considered druggable and attractive therapeutic targets, most of the solute carrier (SLC) membrane transporters remain pharmacologically underexploited. One of the reasons for this is a lack of reliable chemical screening assays, made difficult by functional redundancies among SLCs. In this study we leveraged synthetic lethality between the lactate transporters SLC16A1 and SLC16A3 in a screening strategy that we call paralog-dependent isogenic cell assay (PARADISO). The system involves five isogenic cell lines, each dependent on various paralog genes for survival/fitness, arranged in a screening cascade tuned for the identification of SLC16A3 inhibitors. We screened a diversity-oriented library of ∼90,000 compounds and further developed our hits into slCeMM1, a paralog-selective and potent SLC16A3 inhibitor. By implementing chemoproteomics, we showed that slCeMM1 is selective also at the proteome-wide level, thus fulfilling an important criterion for chemical probes. This study represents a framework for the development of specific cell-based drug discovery assays.


Assuntos
Proteínas de Transporte , Descoberta de Drogas , Proteínas de Membrana Transportadoras/genética
10.
EMBO Mol Med ; 15(8): e18014, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37435859

RESUMO

Ferroptosis has emerged as an attractive strategy in cancer therapy. Understanding the operational networks regulating ferroptosis may unravel vulnerabilities that could be harnessed for therapeutic benefit. Using CRISPR-activation screens in ferroptosis hypersensitive cells, we identify the selenoprotein P (SELENOP) receptor, LRP8, as a key determinant protecting MYCN-amplified neuroblastoma cells from ferroptosis. Genetic deletion of LRP8 leads to ferroptosis as a result of an insufficient supply of selenocysteine, which is required for the translation of the antiferroptotic selenoprotein GPX4. This dependency is caused by low expression of alternative selenium uptake pathways such as system Xc- . The identification of LRP8 as a specific vulnerability of MYCN-amplified neuroblastoma cells was confirmed in constitutive and inducible LRP8 knockout orthotopic xenografts. These findings disclose a yet-unaccounted mechanism of selective ferroptosis induction that might be explored as a therapeutic strategy for high-risk neuroblastoma and potentially other MYCN-amplified entities.


Assuntos
Ferroptose , Neuroblastoma , Humanos , Linhagem Celular Tumoral , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/tratamento farmacológico , Selenocisteína/uso terapêutico , Animais
11.
Ann Rheum Dis ; 82(9): 1142-1152, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37344156

RESUMO

INTRODUCTION: Structural reorganisation of the synovium with expansion of fibroblast-like synoviocytes (FLS) and influx of immune cells is a hallmark of rheumatoid arthritis (RA). Activated FLS are increasingly recognised as a critical component driving synovial tissue remodelling by interacting with immune cells resulting in distinct synovial pathotypes of RA. METHODS: Automated high-content fluorescence microscopy of co-cultured cytokine-activated FLS and autologous peripheral CD4+ T cells from patients with RA was established to quantify cell-cell interactions. Phenotypic profiling of cytokine-treated FLS and co-cultured T cells was done by flow cytometry and RNA-Seq, which were integrated with publicly available transcriptomic data from patients with different histological synovial pathotypes. Computational prediction and knock-down experiments were performed in FLS to identify adhesion molecules for cell-cell interaction. RESULTS: Cytokine stimulation, especially with TNF-α, led to enhanced FLS-T cell interaction resulting in cell-cell contact-dependent activation, proliferation and differentiation of T cells. Signatures of cytokine-activated FLS were significantly enriched in RA synovial tissues defined as lymphoid-rich or leucocyte-rich pathotypes, with the most prominent effects for TNF-α. FLS cytokine signatures correlated with the number of infiltrating CD4+ T cells in synovial tissue of patients with RA. Ligand-receptor pair interaction analysis identified ICAM1 on FLS as an important mediator in TNF-mediated FLS-T cell interaction. Both, ICAM1 and its receptors were overexpressed in TNF-treated FLS and co-cultured T cells. Knock-down of ICAM1 in FLS resulted in reduced TNF-mediated FLS-T cell interaction. CONCLUSION: Our study highlights the role of cytokine-activated FLS in orchestrating inflammation-associated synovial pathotypes providing novel insights into disease mechanisms of RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Citocinas , Fator de Necrose Tumoral alfa/farmacologia , Membrana Sinovial/patologia , Sinoviócitos/patologia , Fibroblastos/patologia , Células Cultivadas
13.
Nat Metab ; 5(3): 495-515, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36941451

RESUMO

Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing.


Assuntos
Insuficiência de Crescimento , RNA Nucleotidiltransferases , Animais , Humanos , Camundongos , Camundongos Knockout , Debilidade Muscular/genética , Músculos , RNA Nucleotidiltransferases/química , RNA Nucleotidiltransferases/genética , Peixe-Zebra
14.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36725334

RESUMO

Phagocytosis, the process by which cells engulf large particles, plays a vital role in driving tissue clearance and host defense. Its dysregulation is connected to autoimmunity, toxic accumulation of proteins, and increased risks for infections. Despite its importance, we lack full understanding of all molecular components involved in the process. To create a functional map in human cells, we performed a genome-wide CRISPRko FACS screen that identified 716 genes. Mapping those hits to a comprehensive protein-protein interaction network annotated for functional cellular processes allowed retrieval of protein complexes identified multiple times and detection of missing phagocytosis regulators. In addition to known components, such as the Arp2/3 complex, the vacuolar-ATPase-Rag machinery, and the Wave-2 complex, we identified and validated new phagocytosis-relevant functions, including the oligosaccharyltransferase complex (MAGT1/SLC58A1, DDOST, STT3B, and RPN2) and the hypusine pathway (eIF5A, DHPS, and DOHH). Overall, our phagocytosis network comprises elements of cargo uptake, shuffling, and biotransformation through the cell, providing a resource for the identification of potential novel drivers for diseases of the endo-lysosomal system. Our approach of integrating protein-protein interaction offers a broadly applicable way to functionally interpret genome-wide screens.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Hexosiltransferases , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas , Fagocitose/genética , Hexosiltransferases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
15.
Blood Cancer Discov ; 3(6): 502-515, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36125297

RESUMO

Drug testing in patient biopsy-derived cells can identify potent treatments for patients suffering from relapsed or refractory hematologic cancers. Here we investigate the use of weakly supervised deep learning on cell morphologies (DML) to complement diagnostic marker-based identification of malignant and nonmalignant cells in drug testing. Across 390 biopsies from 289 patients with diverse blood cancers, DML-based drug responses show improved reproducibility and clustering of drugs with the same mode of action. DML does so by adapting to batch effects and by autonomously recognizing disease-associated cell morphologies. In a post hoc analysis of 66 patients, DML-recommended treatments led to improved progression-free survival compared with marker-based recommendations and physician's choice-based treatments. Treatments recommended by both immunofluorescence and DML doubled the fraction of patients achieving exceptional clinical responses. Thus, DML-enhanced ex vivo drug screening is a promising tool in the identification of effective personalized treatments. SIGNIFICANCE: We have recently demonstrated that image-based drug screening in patient samples identifies effective treatment options for patients with advanced blood cancers. Here we show that using deep learning to identify malignant and nonmalignant cells by morphology improves such screens. The presented workflow is robust, automatable, and compatible with clinical routine. This article is highlighted in the In This Issue feature, p. 476.


Assuntos
Neoplasias Hematológicas , Medicina de Precisão , Humanos , Reprodutibilidade dos Testes
16.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36114003

RESUMO

Solute carrier (SLC) transporters control fluxes of nutrients and metabolites across membranes and thereby represent a critical interface between the microenvironment and cellular and subcellular metabolism. Because of substantial functional overlap, the interplay and relative contributions of SLCs in response to environmental stresses remain poorly elucidated. To infer functional relationships between SLCs and metabolites, we developed a strategy to identify SLCs able to sustain cell viability and proliferation under growth-limiting concentrations of essential nutrients. One-by-one depletion of 13 amino acids required for cell proliferation enabled gain-of-function genetic screens using a SLC-focused CRISPR/Cas9-based transcriptional activation approach to uncover transporters relieving cells from growth-limiting metabolic bottlenecks. Among the transporters identified, we characterized the cationic amino acid transporter SLC7A3 as a gene that, when up-regulated, overcame low availability of arginine and lysine by increasing their uptake, whereas SLC7A5 was able to sustain cellular fitness upon deprivation of several neutral amino acids. Moreover, we identified metabolic compensation mediated by the glutamate/aspartate transporters SLC1A2 and SLC1A3 under glutamine-limiting conditions. Overall, this gain-of-function approach using human cells uncovered functional transporter-nutrient relationships and revealed that transport activity up-regulation may be sufficient to overcome environmental metabolic restrictions.


Assuntos
Proteínas de Membrana Transportadoras , Nutrientes , Sistemas de Transporte de Aminoácidos Básicos/genética , Aminoácidos/metabolismo , Arginina/metabolismo , Ácido Aspártico/metabolismo , Mutação com Ganho de Função , Glutamatos/metabolismo , Glutamina/metabolismo , Humanos , Transportador 1 de Aminoácidos Neutros Grandes , Lisina/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Nutrientes/metabolismo
17.
iScience ; 25(10): 105096, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36164651

RESUMO

Solute carriers are an operationally defined diverse family of membrane proteins involved in the transport of nutrients, metabolites, xenobiotics, and drugs. Here, we provide an integrative classification of solute carriers by combining evolutionary information with proteome-wide structure models recently made available through the AlphaFold resource. Analyses of orthologous relations among 455 protein-coding genes currently classified as human solute carriers, over the fully sequenced genomes of 2,100 species, suggest no more than approximately 180 independent evolutionary origins. Structural comparative analyses provided further insight revealing a total of 24 structurally distinct transmembrane folds, increasing by approximately 40% the number of previously described SLC structural folds. In addition, a structural comparative analysis identified a new human solute carrier member and revealed details of noncanonical ones. Our analyses uncover new ancestral relations between solute carrier genes, provide insights into the evolution of remote homologs and a platform to test hypotheses of functional deorphanization.

19.
Front Pharmacol ; 13: 872335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677430

RESUMO

Excitatory amino acid transporters (EAAT/SLC1) mediate Na+-dependent uptake of extracellular glutamate and are potential drug targets for neurological disorders. Conventional methods to assess glutamate transport in vitro are based on radiolabels, fluorescent dyes or electrophysiology, which potentially compromise the cell's physiology and are generally less suited for primary drug screens. Here, we describe a novel label-free method to assess human EAAT function in living cells, i.e., without the use of chemical modifications to the substrate or cellular environment. In adherent HEK293 cells overexpressing EAAT1, stimulation with glutamate or aspartate induced cell spreading, which was detected in real-time using an impedance-based biosensor. This change in cell morphology was prevented in the presence of the Na+/K+-ATPase inhibitor ouabain and EAAT inhibitors, which suggests the substrate-induced response was ion-dependent and transporter-specific. A mechanistic explanation for the phenotypic response was substantiated by actin cytoskeleton remodeling and changes in the intracellular levels of the osmolyte taurine, which suggests that the response involves cell swelling. In addition, substrate-induced cellular responses were observed for cells expressing other EAAT subtypes, as well as in a breast cancer cell line (MDA-MB-468) with endogenous EAAT1 expression. These findings allowed the development of a label-free high-throughput screening assay, which could be beneficial in early drug discovery for EAATs and holds potential for the study of other transport proteins that modulate cell shape.

20.
Trends Pharmacol Sci ; 43(5): 358-361, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35232590

RESUMO

Solute carrier transporters (SLCs) limit receptor activation via uptake of extracellular ligands. Novel concepts are emerging that describe the modulation of intracellular and plasma membrane receptors by ligand influx and efflux via SLCs, respectively. Here, we evaluate recent insights and provide an outlook for developing potential therapeutic strategies.


Assuntos
Proteínas de Membrana Transportadoras , Proteínas Carreadoras de Solutos , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Ligantes , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Carreadoras de Solutos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...